Answer:
[tex](r^9-s^{10})(r^{18}+r^9s^{10}+s^{20})[/tex]
Step-by-step explanation:
[tex]r^{27}-s^{30}[/tex]
We know a^3 - b^3 formula
[tex]a^3 - b^3 = (a-b)(a^2+ab+b^2)[/tex]
Rewrite r^27-s^30 in cube form
[tex](r^{9})^3-(s^{10})^3[/tex]
Now we apply the formula. we have r^9 in the place of 'a'
and s^10 in the place of 'b'
[tex](r^{9})^3-(s^{10})^3[/tex]
[tex](r^9-s^{10})((r^9)^2+r^9s^{10}+(s^{10})^2)[/tex]
[tex](r^9-s^{10})(r^{18}+r^9s^{10}+s^{20})[/tex]