Respuesta :

(r^9 - s^10) (r^18 + r^9 s^10 + s^20) 
Hope this helps

Answer:

[tex](r^9-s^{10})(r^{18}+r^9s^{10}+s^{20})[/tex]

Step-by-step explanation:

[tex]r^{27}-s^{30}[/tex]

We know a^3 - b^3 formula

[tex]a^3 - b^3 = (a-b)(a^2+ab+b^2)[/tex]

Rewrite r^27-s^30 in cube form

[tex](r^{9})^3-(s^{10})^3[/tex]

Now we apply the formula. we have r^9 in the place of 'a'

and s^10 in the place of 'b'

[tex](r^{9})^3-(s^{10})^3[/tex]

[tex](r^9-s^{10})((r^9)^2+r^9s^{10}+(s^{10})^2)[/tex]

[tex](r^9-s^{10})(r^{18}+r^9s^{10}+s^{20})[/tex]