Respuesta :

[tex] \frac{1 +/- \sqrt{253} }{14} [/tex]

You can get this by using the quadratic equation with a = 7, b = -1, c = -9

we know that

The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]7x^{2}=9+x[/tex]  

Equate the equation to zero

[tex]7x^{2}-x-9=0[/tex]  

so

[tex]a=7\\b=-1\\c=-9[/tex]

substitute in the formula

[tex]x=\frac{-(-1)(+/-)\sqrt{(-1)^{2}-4(7)(-9)}} {2(7)}[/tex]

[tex]x=\frac{1(+/-)\sqrt{1+252}} {14}[/tex]

[tex]x=\frac{1(+/-)\sqrt{253}}{14}[/tex]

therefore

the answer is

[tex]x=\frac{1(+/-)\sqrt{253}}{14}[/tex]