Respuesta :

55 degrees that is the answer.

Alright, lets get started.

We could use sine law to find the remaining angle.

[tex] \frac{sinA}{a} = \frac{sinB}{b} [/tex]

[tex] \frac{sinS}{63.6} = \frac{sin64}{69.8} [/tex]

Plugging the value of sin 64

[tex] \frac{sinS}{63.6} = \frac{0.8987}{69.8} [/tex]

[tex] \frac{sinS}{63.6} = 0.01287 [/tex]

Cross multiplying

sin S = 0.8189

Taking inverse on both side

[tex] S = sin^{-1}(0.8189) [/tex]

S = 55° : Answer

Hope it will help :)