Respuesta :

Unlike the previous problem, this one requires application of the Law of Cosines.  You want to find angle Q when you know the lengths of all 3 sides of the triangle.

Law of Cosines:  a^2 = b^2 + c^2 - 2bc cos A

Applying that here:

                           40^2 = 32^2 + 64^2 - 2(32)(64)cos Q

Do the math.  Solve for cos Q, and then find Q in degrees and Q in radians.

The value of the angle Q in the given diagram is 30.75 degrees.

The previous problem, this one requires the application of the Law of Cosines.

We have to determine the angle Q when you know the lengths of all 3 sides of the triangle.

What is the law of Cosines?

a^2 = b^2 + c^2 - 2bc cos A

[tex]32^2+64^2-2\cdot \:32\cdot \:64\cos \left(Q\right)=40^2[/tex]

[tex]32^2+64^2-4096\cos \left(Q\right)=40^2[/tex]

[tex]1024+64^2-4096\cos \left(Q\right)=40^2[/tex]

[tex]1024+4096-4096\cos \left(Q\right)=40^2[/tex]

[tex]-4096\cos \left(Q\right)+5120=40^2[/tex]

[tex]-4096\cos \left(Q\right)+5120=1600[/tex]

[tex]-4096\cos \left(Q\right)=-3520[/tex]

[tex]\frac{-4096\cos \left(Q\right)}{-4096}=\frac{-3520}{-4096}[/tex]

[tex]\cos \left(Q\right)=\frac{55}{64}[/tex]

[tex]Q=30.75^0[/tex]

Solve for cos Q, and then find Q in degrees and Q in radians.

Therefore we get the value of the angle Q is 30.75 degrees.

To learn more about the angle visit:

https://brainly.com/question/25770607

#SPJ2