Respuesta :
V (Volume) = s^2 * h = 48 ------> h = 48s^-2
C (Cost) = (4sh)(2) + (2s^2)(1) = 2s^2 + 8sh = 2s^2 + 8s(48s^-2) = 2s^2 + 384s^-1
dC/ds = 4s - 384s^-2 = 0 ------> 4s(1 - 96s^-3) = 0
Since s can't be 0, the only possible solution is:
1 - 96s^-3 = 0
s^3 - 96 = 0
s = cube root(96) = 2 cube root(12) ~ 4.579 cm
s^2 = 4 + 2 cube root(18) = 2[2 + cube root(18)]
h = 48/s^2 = 24/[2 + cube root(18)] ~ 5.194 cm
C (Cost) = (4sh)(2) + (2s^2)(1) = 2s^2 + 8sh = 2s^2 + 8s(48s^-2) = 2s^2 + 384s^-1
dC/ds = 4s - 384s^-2 = 0 ------> 4s(1 - 96s^-3) = 0
Since s can't be 0, the only possible solution is:
1 - 96s^-3 = 0
s^3 - 96 = 0
s = cube root(96) = 2 cube root(12) ~ 4.579 cm
s^2 = 4 + 2 cube root(18) = 2[2 + cube root(18)]
h = 48/s^2 = 24/[2 + cube root(18)] ~ 5.194 cm
V (Volume) = s^2 * h = 48 ------> h = 48s^-2 C (Cost) = (4sh)(2) + (2s^2)(1) = 2s^2 + 8sh = 2s^2 + 8s(48s^-2) = 2s^2 + 384s^-1 dC/ds = 4s - 384s^-2 = 0 ------> 4s(1 - 96s^-3) = 0 Since s can't be 0, the only possible solution is: 1 - 96s^-3 = 0 s^3 - 96 = 0 s = cube root(96) = 2 cube root(12) ~ 4.579 cm s^2 = 4 + 2 cube root(18) = 2[2 + cube root(18)] h = 48/s^2 = 24/[2 + cube root(18)] ~ 5.194 cm