Respuesta :
we know that
the length of a circumference=2*pi*r
for r=8 ft
the length of a circumference=2*pi*8---------> 16π ft
if 2π radians (full circle)-------------------> has a length of 16π ft
3π/4 radians-------------------------------> X
X=3π/4*16π/2π-------------> X=6π ft
the answer is
6π ft
the length of a circumference=2*pi*r
for r=8 ft
the length of a circumference=2*pi*8---------> 16π ft
if 2π radians (full circle)-------------------> has a length of 16π ft
3π/4 radians-------------------------------> X
X=3π/4*16π/2π-------------> X=6π ft
the answer is
6π ft
Answer:
(C) [tex]6{\pi}ft[/tex].
Step-by-step explanation:
It is given that In a circle with a radius of 8 ft, an arc is intercepted by a central angle of [tex]\frac{3\pi}{4}[/tex] radians. Then the length of the arc is given by:
Length of the arc=radius×angle in radians
⇒Length of the arc=[tex]8{\times}\frac{3\pi}{4}[/tex]
⇒Length of the arc=[tex]6{\pi}ft[/tex]
Therefore, the length of the arc is [tex]6{\pi}ft[/tex].