Respuesta :

Maximum Point: (0, 1) 
Global Minimum Points: (-1, 0) & (1, 0)


Your graph should look something like this for the equation you've provided.
Ver imagen juveazam24

Answer with explanation:

Drawing the graph of,

    [tex]y = x^4 - 2 x^2 + 1\\\\=(x^2-1)^2[/tex]

Used the Identity

(a - b)²=a² - 2 a b + b²

To find the Maximum , we will differentiate the function

y'=2×(x²-1)×(2 x)

  y' = 4 x(x²-1)

For maximum or Minimum

y'=0

→4 x(x²-1)=0

→x=0,∧ x²-1=0

→x²=1

→x=1 ∧ x= -1

So, three critical Points are, x=0,1 and -1.

[tex]y(0)=0^4-2\times (0)^2+1\\\\ y(0)=1\\\\y(1)=1^4-2 \times (1)^2+1\\\\y(1)=2-2\\\\y(2)=0\\\\y(-1)=(-1)^4-2 \times (-1)^2+1\\\\y(-1)=1-2+1\\\\y(-1)=0[/tex]

At, x=0,function attains Maximum Value.

Maximum value of the function ,is 1.

⇒ you can check graphically also.

Ver imagen Аноним