Respuesta :

f(2/3)=-15/2,     x = 2/3,  y = -15/2

 f(-4)=-11,          x = -4,   y = -11.

we'll do the same here, so let's proceed,

[tex]\bf \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &&(~ \frac{2}{3} &,& -\frac{15}{2}~) % (c,d) &&(~ -4 &,& -11~) \end{array} \\\\\\ % slope = m slope = m\implies \cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{-11-\left(-\frac{15}{2} \right)}{-4-\frac{2}{3}}\implies \cfrac{-11+\frac{15}{2} }{-4-\frac{2}{3}}[/tex]

[tex]\bf \cfrac{\quad \frac{-7}{2}\quad }{-\frac{14}{3}}\implies -\cfrac{7}{2}\cdot -\cfrac{3}{14}\implies -\cfrac{1}{2}\cdot -\cfrac{3}{2}\implies \cfrac{3}{4} \\\\\\ % point-slope intercept \stackrel{\textit{point-slope form}}{y- y_1= m(x- x_1)}\implies y-\left( -\cfrac{15}{2} \right)=\cfrac{3}{4}\left(x-\cfrac{2}{3}\right) \\\\\\ y+\cfrac{15}{2}=\cfrac{3}{4}x-\cfrac{1}{2}\implies y=\cfrac{3}{4}x-\cfrac{16}{2}\implies y=\cfrac{3}{4}x-8[/tex]