f(2/3)=-15/2, x = 2/3, y = -15/2
f(-4)=-11, x = -4, y = -11.
we'll do the same here, so let's proceed,
[tex]\bf \begin{array}{ccccccccc}
&&x_1&&y_1&&x_2&&y_2\\
% (a,b)
&&(~ \frac{2}{3} &,& -\frac{15}{2}~)
% (c,d)
&&(~ -4 &,& -11~)
\end{array}
\\\\\\
% slope = m
slope = m\implies
\cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{-11-\left(-\frac{15}{2} \right)}{-4-\frac{2}{3}}\implies \cfrac{-11+\frac{15}{2} }{-4-\frac{2}{3}}[/tex]
[tex]\bf \cfrac{\quad \frac{-7}{2}\quad }{-\frac{14}{3}}\implies -\cfrac{7}{2}\cdot -\cfrac{3}{14}\implies -\cfrac{1}{2}\cdot -\cfrac{3}{2}\implies \cfrac{3}{4}
\\\\\\
% point-slope intercept
\stackrel{\textit{point-slope form}}{y- y_1= m(x- x_1)}\implies y-\left( -\cfrac{15}{2} \right)=\cfrac{3}{4}\left(x-\cfrac{2}{3}\right)
\\\\\\
y+\cfrac{15}{2}=\cfrac{3}{4}x-\cfrac{1}{2}\implies y=\cfrac{3}{4}x-\cfrac{16}{2}\implies y=\cfrac{3}{4}x-8[/tex]