Place the following steps in order to complete the square and solve the quadratic equation, x^2 - 6x + 7 = 0.

Answer:
option f
option a
option d
option c
option e
option b
Step-by-step explanation:
we have x^2 - 6x + 7 = 0
f) x^2 - 6x = -7
a) x^2 - 6x + 9 = -7+9
d) (x-3)^2=2
c)[tex]\sqrt{(x-3)^{2}} = +-\sqrt{2}[/tex]
e) x-3=+-[tex]\sqrt{2}[/tex]
b) x=3+-[tex]\sqrt{2}[/tex]
Answer:
[tex]x^2-6x=-7[/tex]
[tex]x^2-6x+9=-7+9[/tex]
[tex](x-3)^2=2[/tex]
[tex]\sqrt{(x-3)^2}=\pm\sqrt{2}[/tex]
[tex](x-3)=\pm\sqrt{2}[/tex]
[tex]x-3=3\pm\sqrt{2}[/tex]
Step-by-step explanation:
The given quadratic equation is
[tex]x^2-6x+7=0[/tex]
Subtract 7 from both sides.
[tex]x^2-6x=-7[/tex] ...(1)
If an expression is [tex]x^2+bx[/tex], then we add [tex](\frac{b}{2})^2[/tex] to make it perfect square.
[tex](\frac{b}{2})^2=(\frac{-6}{2})^2=9[/tex]
Add 9 on both sides in equation (1).
[tex]x^2-6x+9=-7+9[/tex]
[tex](x-3)^2=2[/tex] [tex][\because (a-b)^2=a^2-2ab+b^2][/tex]
Taking square root on both sides.
[tex]\sqrt{(x-3)^2}=\pm\sqrt{2}[/tex]
[tex](x-3)=\pm\sqrt{2}[/tex]
Add 3 on both sides.
[tex]x-3=3\pm\sqrt{2}[/tex]
Therefore, the correct order is F, A, D, C, E and B.