Respuesta :

Answer:

option f

option a

option d

option c

option e

option b

Step-by-step explanation:

we have x^2 - 6x + 7 = 0

f) x^2 - 6x   = -7    

a) x^2 - 6x + 9 = -7+9

d) (x-3)^2=2

c)[tex]\sqrt{(x-3)^{2}} = +-\sqrt{2}[/tex]

e) x-3=+-[tex]\sqrt{2}[/tex]

b) x=3+-[tex]\sqrt{2}[/tex]

Answer:

[tex]x^2-6x=-7[/tex]

[tex]x^2-6x+9=-7+9[/tex]

[tex](x-3)^2=2[/tex]

[tex]\sqrt{(x-3)^2}=\pm\sqrt{2}[/tex]

[tex](x-3)=\pm\sqrt{2}[/tex]

[tex]x-3=3\pm\sqrt{2}[/tex]

Step-by-step explanation:

The given quadratic equation is

[tex]x^2-6x+7=0[/tex]

Subtract 7 from both sides.

[tex]x^2-6x=-7[/tex]           ...(1)

If an expression is [tex]x^2+bx[/tex], then we add [tex](\frac{b}{2})^2[/tex] to make it perfect square.

[tex](\frac{b}{2})^2=(\frac{-6}{2})^2=9[/tex]

Add 9 on both sides in equation (1).

[tex]x^2-6x+9=-7+9[/tex]

[tex](x-3)^2=2[/tex]               [tex][\because (a-b)^2=a^2-2ab+b^2][/tex]

Taking square root on both sides.

[tex]\sqrt{(x-3)^2}=\pm\sqrt{2}[/tex]

[tex](x-3)=\pm\sqrt{2}[/tex]

Add 3 on both sides.

[tex]x-3=3\pm\sqrt{2}[/tex]

Therefore, the correct order is F, A, D, C, E and B.