Respuesta :

so we have[tex] \frac{ \frac{1}{b^{2}} }{ \frac{a}{b^{2}} } [/tex]


multiply by [tex] \frac{ \frac{b^{2}}{a} }{ \frac{b^{2}}{a} } [/tex] to make bottom number 1
[tex] \frac{ \frac{b^{2}}{ab^{2}} }{ \frac{ab^{2}}{ab^{2}} } [/tex]=[tex] \frac{ \frac{b^{2}}{ab^{2}} }{1} [/tex]=[tex] \frac{b^{2}}{ab^{2}} [/tex] = [tex] \frac{1}{a} [/tex]




Leader
Use this formula to solve your question:

[tex] \frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} =\frac{ad}{bc}[/tex]

[tex] \frac{1}{b^2} \div \frac{a}{b^2} = \frac{1}{b^2} \times \frac{b^2}{a} = \frac{b^2}{b^2 \times a} =\boxed{\bf{\frac{1}{a}}}[/tex]

Your final answer is 1/a.