Respuesta :
[tex]A(x) = \frac{f(x) - f(a)}{x - a} = \frac{f(-1) - f(2)}{-1 - 2} = \frac{5 - 8}{-3} = \frac{-3}{-3} = 1[/tex]
The answer is C.
The answer is C.
we have
[tex]f(x)=x^{4}-4x[/tex]
Step 1
Using the table find the value of f(x) for [tex]x=-1[/tex]
[tex]x=-1\\f(-1)=5[/tex]
Step 2
Using the table find the value of f(x) for [tex]x=2[/tex]
[tex]x=2\\f(2)=8[/tex]
Step 3
Find the average rate of change
we know that
the average rate of change is equal to the formula
[tex]\frac{f(b)-f(a)}{b-a}[/tex]
in this problem we have
[tex]f(b)=f(2)=8[/tex]
[tex]f(a)=f(-1)=5[/tex]
[tex]b=2[/tex]
[tex]a=-1[/tex]
substitute the values in the formula
[tex]\frac{8-5}{2+1}[/tex]
[tex]\frac{3}{3}=1[/tex]
therefore
the answer is the option C
the average rate of change is [tex]1[/tex]