What is the current in a wire if 3.4 x 10^19 electrons pass by a point in this wire every 60 seconds?

A) 9.1 x 10^-2 A
B) 3.1 x 10^-11 A
C) 1.8 x 10^-18 A
D) 11 A

Respuesta :

The current is defined as the amount of charge Q that passes through a certain point of a wire in a time [tex]\Delta t[/tex]:
[tex]I= \frac{Q}{\Delta t} [/tex]

But the charge Q flowing in the wire is just the charge of a single electron, e, times the number of electrons N:
[tex]Q=Ne[/tex]
so the current can be rewritten as
[tex]I= \frac{Ne}{\Delta t} [/tex]

Using [tex]N=3.4 \cdot 10^{19} [/tex], [tex]e= 1.6 \cdot 10^{-19} C[/tex] (charge of one electron), and [tex]\Delta t = 60 s[/tex], we find the current:
[tex]I= \frac{Ne}{\Delta t}= \frac{(3.4 \cdot 10^{19})(1.6 \cdot 10^{-19}C}{60 s}=9.1 \cdot 10^{-2}A [/tex]

Therefore correct answer is A).
Lanuel

The amount of current in this wire is equal to: A. [tex]9.1 \times 10^{-2}\;A[/tex]

Given the following data:

  • Number of electrons = [tex]3.4 \times 10^{19}[/tex] electrons.
  • Time = 60 seconds

Scientific data:

  • Charge of electron = [tex]1.6 \times 10^{-19}\;C[/tex]

To determine the amount of current in this wire:

First of all, we would determine the total quantity of charge by using this formula;

[tex]Q =Nc\\\\Q= 3.4 \times 10^{19} \times 1.6 \times 10^{-19}\\\\[/tex]

Q = 5.44 C

Mathematically, the quantity of charge is given by this formula:

[tex]Q=It[/tex]

Where:

  • Q is the quantity of charge.
  • i is the current.
  • t is the time measured in seconds.

Making I the subject of formula, we have:

[tex]I=\frac{Q}{t}[/tex]

Substituting the given parameters into the formula, we have;

[tex]I=\frac{5.44}{60} \\\\I=9.1 \times 10^{-2}\;A[/tex]

Read more on charges here: https://brainly.com/question/4313738