Respuesta :
the complete question in the attached figure
we have that
m∠4=68°
we know that
m∠4 and m∠3 are supplementary angles
so
m∠3=180-m∠4----- m∠3=180-68------> m∠3=112°
m∠3 = m∠2 --------> by alternate interior angles
so
m∠2=112°
m∠1 = m∠4 --------> by alternate exterior angles
so
m∠1=68°
m∠5 = m∠4---------> by corresponding angles
so
m∠5=68°
the answers are
m∠1=68°
m∠2=112
m∠3=112°
m∠5=68°
we have that
m∠4=68°
we know that
m∠4 and m∠3 are supplementary angles
so
m∠3=180-m∠4----- m∠3=180-68------> m∠3=112°
m∠3 = m∠2 --------> by alternate interior angles
so
m∠2=112°
m∠1 = m∠4 --------> by alternate exterior angles
so
m∠1=68°
m∠5 = m∠4---------> by corresponding angles
so
m∠5=68°
the answers are
m∠1=68°
m∠2=112
m∠3=112°
m∠5=68°

Answer:
Step-by-step explanation:
It is given that lines a, b, and c are parallel and m∠4=68°. Then, from the figure,
∠4=∠5=68° (Corresponding angles)
Now, ∠3+∠4=180° (Linear pair)
⇒∠3+68°=180°
⇒∠3=112°
As, ∠2 and ∠3 forms the alternate interior angle pair, thus ∠2=∠3=112°.
And, ∠1+∠2=180° (Linear pair)
⇒∠1+112°=180°
⇒∠1=68°.
Thus, ∠1=68°, ∠2=112°, ∠3=112°,∠4=68°and ∠5=68°.
