Respuesta :
Answer:
The expression of (t×s)(x) is:
[tex]4x^3-29x^2+10x-21[/tex]
Step-by-step explanation:
we are given that:
s(x) = x – 7 and t(x) = 4x² – x + 3
We have to find the value of (t×s)(x)
We know that
(t×s)(x)=t(x) × s(x)
= (4x²-x+3)(x-7)
= x(4x²-x+3) -7(4x²-x+3)
= [tex]4x^3-x^2+3x-28x^2+7x-21[/tex]
= [tex]4x^3-x^2(1+28)+x(3+7)-21[/tex]
= [tex]4x^3-29x^2+10x-21[/tex]
Hence, The expression of (t×s)(x) is:
[tex]4x^3-29x^2+10x-21[/tex]