Respuesta :

t(x)×s(x) = (4x² -x +3)×(x -7)

(t×s)(x) = 4x³ -29x² +10x -21

Answer:

The expression of (t×s)(x) is:

[tex]4x^3-29x^2+10x-21[/tex]

Step-by-step explanation:

we are given that:

s(x) = x – 7 and t(x) = 4x² – x + 3

We have to find the value of (t×s)(x)

We know that

(t×s)(x)=t(x) × s(x)

          = (4x²-x+3)(x-7)

          = x(4x²-x+3) -7(4x²-x+3)

          = [tex]4x^3-x^2+3x-28x^2+7x-21[/tex]

          = [tex]4x^3-x^2(1+28)+x(3+7)-21[/tex]

         = [tex]4x^3-29x^2+10x-21[/tex]

Hence, The expression of (t×s)(x) is:

[tex]4x^3-29x^2+10x-21[/tex]