Respuesta :
The equation of a circle is:
(x - h)² + (y - k)² = r²
The equation of a parabola is:
(x - h)² = 4p(y - k)
The equation of an ellipse is:
[tex] \frac{(x-h) ^{2} }{ a^{2} } + \frac{(y-k) ^{2} }{ b^{2} } = 1[/tex]
where variables a and b and the two different measurements of the vertices
The equation of a hyperbola is:
[tex] \frac{((x-h)^{2} }{ a^{2} } - \frac{(y-k)^{2} }{ b^{2} } = 1[/tex] if it is with a horizontal transverse axis
[tex] \frac{ (y-k)^{2} }{ b^{2} } - \frac{ (x-h)^{2} }{ a^{2} } = 1[/tex] if it is with a vertical transverse axis
Notice these have a subtraction operation, the exact opposite ellipse.
(x - h)² + (y - k)² = r²
The equation of a parabola is:
(x - h)² = 4p(y - k)
The equation of an ellipse is:
[tex] \frac{(x-h) ^{2} }{ a^{2} } + \frac{(y-k) ^{2} }{ b^{2} } = 1[/tex]
where variables a and b and the two different measurements of the vertices
The equation of a hyperbola is:
[tex] \frac{((x-h)^{2} }{ a^{2} } - \frac{(y-k)^{2} }{ b^{2} } = 1[/tex] if it is with a horizontal transverse axis
[tex] \frac{ (y-k)^{2} }{ b^{2} } - \frac{ (x-h)^{2} }{ a^{2} } = 1[/tex] if it is with a vertical transverse axis
Notice these have a subtraction operation, the exact opposite ellipse.
Answer:
Step-by-step explanation:
The general form of a conic section:
Ax^2+Bxy+Cy^2+Dx+Ey+F=0
If B = 0, then:
Ellipse: x² and y² have different positive coefficients.
Hyperbola: x² and y² have different signs.
Otherwise, determine the discriminant:
If B² − 4AC < 0, then the conic is an ellipse.
If B² − 4AC > 0, then the conic is a hyperbola.