One method of slowing the growth of an insect population without using pesticides is to introduce into the population a number of sterile males that mate with fertile females but produce no offspring. let p represent the number of female insects in a population and s the number of sterile males introduced each generation. let r be the per capita rate of production of females by females, provided their chosen mate is not sterile. then the female population is related to time t by t = p + s p[(r − 1)p − s] dp. suppose an insect population with 10,000 females grows at a rate of r = 1.2 and 400 sterile males are added. evaluate the integral to give an equation relating the female population to time. (note that the resulting equation can't be solved explicitly for p. remember to use absolute values where appropriate.)

Respuesta :

The relation between population and time is:
[tex]t = \int { \frac{P+S}{P[(r - 1)P - S]} } \, dP [/tex]

Since r = 1.2 and S = 400, we get:
[tex]t = \int { \frac{P+400}{P[(1.2 - 1)P - 400]} } \, dP [/tex]

[tex] \int { \frac{P+400}{P(0.2P - 400)} } \, dP [/tex]

This is a rational function that we can write as:
[tex]\frac{P+400}{P(0.2P - 400)} = \frac{A}{P} + \frac{B}{(0.2P - 400)} [/tex]

In order to evaluate A and B, let's calculate the LCD:
[tex]\frac{P+400}{P(0.2P - 400)} = \frac{A(0.2P - 400)}{P(0.2P - 400)} + \frac{BP}{P(0.2P - 400)} [/tex]

which brings to:
P + 400 = 0.2AP - 400A + BP
             = P(0.2A + B) - 400A

Since, the left side must be equal to the right side, we get the following system of equations:
[tex] \left \{ {{0.2A + B = 1} \atop {-400A = 400}} \right. [/tex]

Which gives:
[tex] \left \{ {{B=1.2} \atop {A=-1}} \right. [/tex]

Therefore, our integral can be written as:
[tex]t = \int { \frac{P+400}{P(0.2P - 400)} } \, dP = \int {( \frac{-1}{P} + \frac{1.2}{0.2P-400} )} \, dP [/tex]
= [tex]- \int { \frac{1}{P} \, dP + 1.2\int { \frac{1}{0.2P-400} } \, dP[/tex]
= [tex]- \int { \frac{1}{P} \, dP + 6\int { \frac{0.2}{0.2P-400} } \, dP[/tex]
= - ln |P| + 6 ln |0.2P - 400| + C

We now have to evaluate the constant C. In order to do so, we consider that at t = 0 P = 10000:
0 = - ln |10000| + 6 ln |0.2(10000) - 400| + C
C = ln |10000
| - 6 ln |1600|
C = ln (10⁴) - 6 ln (2⁶·5²)
C = 4 ln (10) - 36 ln (2) - 12 ln (5)

Therefore, the equation relating female population with time is:
t =  - ln |P| + 6 ln |0.2P - 400| + 4 ln (10) - 36 ln (2) - 12 ln (5)

The equation relating females population with time is [tex]\boxed{t =  - \ln \left| P \right| + 6\ln \left| {0.2P - 400} \right| - 12\ln \left( 5 \right) + 4\ln \left( {10} \right) - 36\ln \left( 2 \right)}.[/tex]

Further explanation:

Explanation:

The female population is related to time and it is given as follows,

[tex]t = \int {\dfrac{{p + s}}{{p\left[ {\left( {r - 1} \right)p - s} \right]}}dp}[/tex]

The sterile males are 400 and the growth rate is 1.2.

[tex]\begin{aligned}t&= \int {\frac{{p + 400}}{{p\left[ {\left( {1.2 - 1} \right)p - 400} \right]}}dp}\\&= \int {\frac{{p + 400}}{{p\left[ {0.2p - 400} \right]}}dp}\\\end{aligned}[/tex]

The expression [tex]\dfrac{{p + 400}}{{p\left[ {0.2p - 400} \right]}}[/tex] can also be expressed as follows,

[tex]\dfrac{{p + 400}}{{p\left[ {0.2p - 400} \right]}} = \dfrac{A}{p} + \dfrac{B}{{\left( {0.2p - 400} \right)}}[/tex]

Find the least common denominator.

[tex]\dfrac{{p + 400}}{{p\left( {0.2p - 400} \right)}} = \dfrac{{A\left( {0.2p - 400} \right)}}{{p\left( {0.2p - 400} \right)}} + \dfrac{{Bp}}{{p\left( {0.2p - 400} \right)}}[/tex]

[tex]\begin{aligned}p + 400 &= 0.2Ap - 400A + Bp\\p + 400 &= p\left( {0.2A + B} \right) - 400A\\\end{aligned}[/tex]

Equate left and right side of the expression to obtain the value of A and B.

[tex]\begin{aligned}0.2A + B &= 1\\- 400A &= 400\\\end{aligned}[/tex]

The value of A can be obtained as follows,

[tex]\begin{aligned}A&= \dfrac{{400}}{{ - 400}}\\A& =- 1\\\end{aligned}[/tex]

The value of B is 1.2.

Integral can be expressed as follows,

[tex]\begin{aligned}t &= \int {\frac{{p + 400}}{{p\left( {0.2p - 400} \right)}}dp}  \\ &= \int {\left( {\frac{{ - 1}}{p} + \frac{{1.2}}{{\left( {0.2p - 400} \right)}}} \right)dp} \\&= - \int {\frac{1}{p}dp}  + 6 \times \int {\frac{{0.2}}{{0.2p - 400}}dp}\\&= - \ln \left| p \right| + 6\ln \left| {0.2p - 400} \right| + C\\\end{aligned}[/tex]

At initial time the population is 10000.

[tex]\begin{aligned}- \ln \left| {10000} \right| + 6\ln \left| {0.2 \times 10000 - 400} \right| + C &= 0\\\ln \left| {10000} \right| - 6\ln \left| {1600} \right| &= C\\4\ln 10 - 36\ln \left( 2 \right) - 12\ln \left( 5 \right) &= C\\\end{aligned}[/tex]

Substitute [tex]4\ln 10 - 36\ln \left( 2 \right) - 12\ln \left( 5 \right)[/tex] for [tex]C.[/tex]

[tex]t =  - \ln \left| p \right| + 6\ln \left| {0.2p - 400} \right| + 4\ln 10 - 36\ln \left( 2 \right) - 12\ln \left( 5 \right)[/tex]

The equation relating females population with time is [tex]\boxed{t = - \ln \left| P \right| + 6\ln \left| {0.2P - 400} \right| - 12\ln \left( 5 \right) + 4\ln \left( {10} \right) - 36\ln \left( 2 \right)}.[/tex]

Learn more:

  1. Learn more about inverse of the functionhttps://brainly.com/question/1632445.
  2. Learn more about equation of circle brainly.com/question/1506955.
  3. Learn more about range and domain of the function https://brainly.com/question/3412497

Answer details:

Grade: High School

Subject: Mathematics

Chapter: Exponential function

Keywords: exponential growth, growth rate model, pesticides, slowing, insect population, sterile males, mate, fertile, females, explicitly, female grows, integral, female insects, male insects, capita rate, chosen mate, generation.