Respuesta :
Answer is: solution has a pH value of 4.
pH₁ = 7.
pH = -log[H₃O⁺].
[H₃O⁺]₁ = 10∧(-pH).
[H₃O⁺]₁ = 10⁻⁷ M.
[H₃O⁺]₂ = 10⁻⁷ M ·10³.
[H₃O⁺]₂ = 10⁻⁴ M.
pH₂ = -log[H₃O⁺]₂.
pH₂ = -log(10⁻⁴ M).
pH₂ = 4.
pH (potential of hydrogen) is a numeric scale used to specify the acidity or basicity an aqueous solution.
When pH is less than seven (pH<7), solution is acidic..
When is equal seven (pH = 7), solution is neutral.
When pH is greater than seven (pH > 7), solution is basic.
pH₁ = 7.
pH = -log[H₃O⁺].
[H₃O⁺]₁ = 10∧(-pH).
[H₃O⁺]₁ = 10⁻⁷ M.
[H₃O⁺]₂ = 10⁻⁷ M ·10³.
[H₃O⁺]₂ = 10⁻⁴ M.
pH₂ = -log[H₃O⁺]₂.
pH₂ = -log(10⁻⁴ M).
pH₂ = 4.
pH (potential of hydrogen) is a numeric scale used to specify the acidity or basicity an aqueous solution.
When pH is less than seven (pH<7), solution is acidic..
When is equal seven (pH = 7), solution is neutral.
When pH is greater than seven (pH > 7), solution is basic.
The pH of the new solution has been 4. Thus, the solution has been more acidic than the precious solution.
The pH has been defined as the negative log of hydronium ion concentration in the solution. The pH has been expressed as:
[tex]\rm pH=-\;log\;[H_3O^+][/tex]
Computation for the pH of the solution
The pH of the given solution has been 7. The hydronium ion concentration has been given as:
[tex]\rm pH=\;-log\;[H_3O^+]\\\\ 7=\;-\;log[H_3O^+]\\\\ H_3O^+=10^-^7\;M[/tex]
The concentration of the new solution has been 1000 times greater than the previous solution.
The previous solution has hydronium ion concentration of [tex]\rm 10^-^7\;M[/tex]. The concentration of new solution will be:
[tex]\rm New\;solution=10^-^7\;\times\;1000\;M\\ New\;solution=10^-^4\;M[/tex]
The concentration of the new solution has been [tex]\rm 10^-^4\;M[/tex]. The pH of the solution has been given as:
[tex]\rm pH=-log\;[H_3O^+]\\ pH=-log\;[10^-^4]\\ pH=4[/tex]
The pH of the new solution has been 4. Thus, the solution has been more acidic than the precious solution.
Learn more about pH of the solution, here:
https://brainly.com/question/4975103