Angles α and β are the two acute angles in a right triangle. Use the relationship between sine and cosine to find the value of α if α < β. sin(2x − 8) = cos(6x − 6)

Respuesta :

Answer:

The value of angle α is 18 degree.

Step-by-step explanation:

Given information: Angles α and β are the two acute angles , α < β.

Given equation is

[tex]\sin (2x-8)=\cos (6x-6)[/tex]

[tex]\cos (90-(2x-8))=\cos (6x-6)[/tex]        [tex][\because \sin (90-x)=\cos x][/tex]

Equating both sides.

[tex]90-2x+8=6x-6[/tex]

[tex]98+6=6x+2x[/tex]

[tex]104=8x[/tex]

[tex]13=x[/tex]

The value of x is 13.

The measure of angles is

[tex]2x-8=2(13)-8=18[/tex]

[tex]6x-6=6(13)-6=72[/tex]

Since 18<72, therefore the value of angle α is 18 degree.

Answer:

A

Step-by-step explanation: