Respuesta :
[tex]\bf ~~~~~~~~~~~~\textit{negative exponents}
\\\\
a^{-n} \implies \cfrac{1}{a^n}
\qquad \qquad
\cfrac{1}{a^n}\implies a^{-n}
\qquad \qquad
a^n\implies \cfrac{1}{a^{-n}}
\\\\
-------------------------------[/tex]
[tex]\bf \cfrac{21x^2y^6+6xy^3-30xy}{3xy}\implies \stackrel{\textit{distributing the denominator}}{\cfrac{21x^2y^6}{3xy}+\cfrac{6xy^3}{3xy}-\cfrac{30xy}{3xy}} \\\\\\ \cfrac{21}{3}\cdot x^2x^{-1}y^6y^{-1}+\cfrac{6}{3}\cdot x^1x^{-1}y^3y^{-1}-\cfrac{30}{3}\cdot x^1x^{-1}y^1y^{-1} \\\\\\ 7x^{2-1}y^{6-1}+2x^{1-1}y^{3-1}-10x^{1-1}y^{1-1}\implies 7xy^5+2y^2-10[/tex]
[tex]\bf \cfrac{21x^2y^6+6xy^3-30xy}{3xy}\implies \stackrel{\textit{distributing the denominator}}{\cfrac{21x^2y^6}{3xy}+\cfrac{6xy^3}{3xy}-\cfrac{30xy}{3xy}} \\\\\\ \cfrac{21}{3}\cdot x^2x^{-1}y^6y^{-1}+\cfrac{6}{3}\cdot x^1x^{-1}y^3y^{-1}-\cfrac{30}{3}\cdot x^1x^{-1}y^1y^{-1} \\\\\\ 7x^{2-1}y^{6-1}+2x^{1-1}y^{3-1}-10x^{1-1}y^{1-1}\implies 7xy^5+2y^2-10[/tex]