Respuesta :
The one which lies in Quadrant II is D(-n,n). Quadrant II has positive y coordinate y and negative x coordinate.
Here's a way to find the midpoint
x midpoint = [tex] \dfrac{x_{1}+x_{2}}{2}[/tex]
y midpoint = [tex] \dfrac{y_{1}+y_{2}}{2}[/tex]
Find x midpoint, plug in the numbers
x midpoint = [tex] \dfrac{x_{1}+x_{2}}{2}[/tex]
x midpoint = [tex] \dfrac{5+(-2)}{2}[/tex]
x midpoint = [tex] \dfrac{3}{2}[/tex]
x midpoint = 1.5
Find y midpoint, plug in the numbers
y midpoint = [tex] \dfrac{y_{1}+y_{2}}{2}[/tex]
y midpoint = [tex] \dfrac{4+1}{2}[/tex]
y midpoint = [tex] \dfrac{5}{2}[/tex]
y midpoint = 2.5
The midpoint of the line segment is (1.5, 2.5)
Here's a way to find the midpoint
x midpoint = [tex] \dfrac{x_{1}+x_{2}}{2}[/tex]
y midpoint = [tex] \dfrac{y_{1}+y_{2}}{2}[/tex]
Find x midpoint, plug in the numbers
x midpoint = [tex] \dfrac{x_{1}+x_{2}}{2}[/tex]
x midpoint = [tex] \dfrac{5+(-2)}{2}[/tex]
x midpoint = [tex] \dfrac{3}{2}[/tex]
x midpoint = 1.5
Find y midpoint, plug in the numbers
y midpoint = [tex] \dfrac{y_{1}+y_{2}}{2}[/tex]
y midpoint = [tex] \dfrac{4+1}{2}[/tex]
y midpoint = [tex] \dfrac{5}{2}[/tex]
y midpoint = 2.5
The midpoint of the line segment is (1.5, 2.5)