Respuesta :

Combine like terms:  −4z+31≥17z+23 becomes 31 ≥ 21z + 23, and 31 ≥ 21z + 23 becomes 8 ≥ 21z.

To solve for z, divide both sides of this inequality by 21:  8/21 ≥ z, or z ≤ 8/21.
The answer is [tex] \frac{8}{21} [/tex]≥z.

-4z+31≥17z+23
+4z      +4z
----------------------
       31
≥21z+23
      -23       -23
-----------------------
       8
≥21z
      ---  -----
      21   21
     
[tex] \frac{8}{21} [/tex]≥z