Given: AAS triangle, A=23°, B=48°, a=14cm.
Find C, b, and c

109; 26.63cm; 33.88cm
109; 21.48cm; 40.11cm
19; 26.63cm; 33.88cm
19; 21.48cm; 40.11cm

Respuesta :

The sum of the angles of a triangle is equal to 180 degrees.

We have then:

[tex] A + B + C = 180
[/tex]

From here, we clear C:

[tex] C = 180 - A - B
[/tex]

Substituting values:

[tex] C = 180 - 23 - 48

C = 109 [/tex]

We now look for the lontigudes of the sides.

To do this, using the sines law we have:

[tex] \frac{c}{sine (109)} =\frac{14}{sine (23)}
[/tex]

From here, we clear c:

[tex] c =\frac{14}{sine (23)}*sine(109)
[/tex]

[tex] c = 33.88
[/tex]

We repeat the same procedure for b:

[tex] \frac{b}{sine (109)} = \frac{14}{sine (23)}
[/tex]

[tex] b = \frac{14}{sine (23)}*sine (48)
[/tex]

[tex] b = 26.63
[/tex]

Answer:

The values of C, b and c are given by:

109; 26.63cm; 33.88cm