In △ABC, m∠A=15°, a=9, and b=10
We apply sine law
[tex] \frac{ sin(a)}{b} = \frac{sin(b)}{b} = \frac{sin(c)}{c} [/tex]
[tex] \frac{ sin(a)}{b} = \frac{sin(b)}{b} [/tex]
[tex] \frac{ sin(15)}{9} = \frac{sin(b)}{10} [/tex]
[tex] \frac{sin 15}{9} * 10 = sin(b) [/tex]
0.287576716 = sin(b)
b= 16.7129 degree
angle A= 15 degree, angle B = 16.71 degree
So angle C = 148.29
[tex] \frac{ sin(a)}{b} = \frac{sin(c)}{c} [/tex]
[tex] \frac{ sin(15)}{9} = \frac{sin(148.29)}{c} [/tex]
c= [tex] \frac{sin(148.29)}{sin(15)} *9 [/tex]
c= 18.28