Respuesta :
The formula of the coordinates of a midpoint:
[tex]M\left(\dfrac{x_1+x_2}{2};\ \dfrac{y_1+y_2}{2}\right)[/tex]
We have:
[tex]A(7,\ -1)\to x_1=7,\ y_1=-1\\\\B(-3,\ 3)\to x_2=-3,\ y_2=3[/tex]
Substitute:
[tex]\dfrac{7+(-3)}{2}=\dfrac{4}{2}=2\\\\\dfrac{-1+3}{2}=\dfrac{2}{2}=1[/tex]
Answer: [tex]M(2,\ 1)[/tex]
The midpoints of AB are (2, 1).
Given that
A line segment has endpoints A(7,-1) and B(-3,3).
We have to determine
What are the coordinates of the midpoint AB?
According to the question
The co-ordinate of the midpoint AB is determined by the following formula;
[tex]\rm Midpoint \ of \ AB = \dfrac{x_1+x_2}{2}, \ \dfrac{y_1+y_2}{2}[/tex]
A line segment has endpoints A(7,-1) and B(-3,3).
Then,
The midpoints of AB are,
[tex]\rm Midpoint \ of \ AB = \dfrac{x_1+x_2}{2}, \ \dfrac{y_1+y_2}{2}\\\\\rm Midpoint \ of \ AB = \dfrac{7+(-3)}{2}, \ \dfrac{(-1)+3}{2}\\\\\rm Midpoint \ of \ AB = \dfrac{7-3}{2}, \ \dfrac{-1+3}{2}\\\\\rm Midpoint \ of \ AB = \dfrac{4}{2}, \ \dfrac{2}{2}\\\\\rm Midpoint \ of \ AB = 2, \ 1[/tex]
Hence, the midpoints of AB are (2, 1).
To know more about Midpoints click the link given below.
https://brainly.com/question/18315903