Respuesta :

To find the area of a rectangle, we multiply the Base by the Height.                        In this case the:   Base = AB   and     Height = BC  

So to get the area, we multiply AB by BC.                                               (and we know that BC = 5x+5/x+3 and BC = [3x+9/2x-4)  

So we would do:

[tex]\frac{5x+5}{x+3}[/tex] x [tex]\frac{3x+9}{2x-4}[/tex]                              

Note: When multiplying fractions together, we multiply the numerator by the numerator, and the denominator by the denominator.                                        

For example [tex]\frac{2}{8}[/tex] x [tex]\frac{3}{4}[/tex] = [tex]\frac{6}{32}[/tex]    


Answer: [tex]\frac{5x+5}{x+3}[/tex] x [tex]\frac{3x+9}{2x-4}[/tex] = [tex]\frac{(5x+5)(3x+9)}{(x+3)(2x-4)}[/tex]

[tex]\frac{(5x+5)(3x+9)}{(x+3)(2x-4)}[/tex] = [tex]\frac{5(x+1)*3(x+3)}{(x+3)*2(x-2)}[/tex] [Note: we are able to factorise some brackets to make the sum easier. For example we can factor out the 5 in (5x+5) to get: 5(x+1)   ]

Now lets simplify by multiplying the 5 and 3 together in the numerator:

[tex]\frac{5(x+1)*3(x+3)}{(x+3)*2(x-2)}[/tex] = [tex]\frac{15 (x+1)(x+3)}{(x+3)*2(x-2)}[/tex]

If you notice, there is a (x+3) in numerator and the denominator. This means that we can cancel out the (x+3), to get the most simplified expression for the area:

[tex]\frac{15 (x+1)(x+3)}{(x+3)*2(x-2)}[/tex] = [tex]\frac{15(x+1)}{2(x-2)}[/tex]

Final Simplified Answer: [tex]\frac{15(x+1)}{2(x-2)}[/tex] which is the last option

gmany

Area of rectangle:

[tex]A=|AB|\cdot|BC|[/tex]

[tex]|AB|=\dfrac{5x+5}{x+3},\ |BC|=\dfrac{3x+9}{2x-4}[/tex]

Substitute

[tex]A=\dfrac{5x+5}{x+3}\cdot\dfrac{3x+9}{2x-4}=\dfrac{(5x+5)(3x+9)}{(x+3)(2x-4)}\\\\=\dfrac{5(x+1)\cdot3(x+3)}{(x+3)\cdot2(x-2)}=\dfrac{15(x+1)}{2(x-2)}=\dfrac{15x+15}{2x-4}[/tex]