The perpendicular bisectors of sides AC and BC of △ABC intersect side AB
at points P and Q respectively , and intersect each other in the exterior (outside) of △ABC. Find the measure of ∠ACB if m∠CPQ=78° and m∠CQP=62°.

Respuesta :

The measure of ∠ACB will be 110°

Explanation

According to the diagram below, [tex]DE[/tex] and [tex]DF[/tex] are the perpendicular bisectors of [tex]AC[/tex] and [tex]BC[/tex] respectively and they intersect side [tex]AB[/tex] at points [tex]P[/tex] and [tex]Q[/tex] respectively.

So, [tex]AE=CE[/tex] and [tex]CF= BF[/tex]

Now, according to the [tex]SAS[/tex] postulate, ΔAPE and ΔCPE are congruent each other. Also, ΔCFQ and ΔBFQ are congruent to each other.

That means, ∠PCE = ∠PAE  and ∠FCQ = ∠FBQ

As ∠CPQ = 78° , so  ∠PCE + ∠PAE = 78°  or,  ∠PCE = [tex]\frac{78}{2}= 39[/tex]°                                    and as ∠CQP = 62° , so ∠FCQ + ∠FBQ = 62° or, ∠FCQ = [tex]\frac{62}{2}=31[/tex]°

Now, in triangle CPQ,  ∠PCQ = 180°-(78° + 62°) = 180° - 140° = 40°

Thus, ∠ACB = ∠PCE + ∠PCQ + ∠FCQ = 39° + 40° + 31° = 110°



Ver imagen Sicista

[tex]\rm \angle ACB = 110^\circ[/tex]

Step-by-step explanation:

Given :

[tex]\rm m \angle CPQ = 78^\circ[/tex]

[tex]\rm m \angle CQP = 62^\circ[/tex]

The perpendicular bisectors of sides AC and BC of triangle ABC intersect side AB at points P and Q respectively and intersect each other in the exterior of triangle ABC.

AE = CE and CF = BF

Solution :

According to side angle side (SAS) postulate triangle APE and triangle CPE are congruent to each other. Therefore,

[tex]\rm \angle PCE = \angle PAE[/tex]  ---- (1)

[tex]\rm \angle FCQ = \angle FBQ[/tex]  ---- (2)

Now,

[tex]\rm \angle CPQ = \angle PCE + \angle PAE = 78^\circ[/tex]

[tex]\rm \angle PCE = \dfrac{78^\circ}{2}=39^\circ[/tex]            (from (1))

Now,

[tex]\rm \angle CQP = \angle FCQ + \angle FBQ = 62^\circ[/tex]

[tex]\rm \angle FCQ = \dfrac{62^\circ}{2}=31^\circ[/tex]            (from(2))

Now in triangle CPQ,

[tex]\rm 78^\circ + 62^\circ + \angle QCP = 180^\circ[/tex]

[tex]\rm \angle QCP =40^\circ[/tex]

Now,

[tex]\rm \angle ACB = \angle QCP + \angle PCE + \angle FCQ = 39^\circ + 31^\circ + 40 ^\circ[/tex]

[tex]\rm \angle ACB = 110^\circ[/tex]

For more information, refer the link given below

https://brainly.com/question/1411515?referrer=searchResults