The volume of a rectangular prism with a square base is fixed at 120 cubic feet. The volume of a rectangular prism with a square base is fixed at 120 cubic feet. Write the surface area of the prism as a function A(x) of the length of the side of the square (x)

Respuesta :

Limosa

Answer:

A(x)=[tex]2*x^{2} +\frac{480}{x}[/tex]

Step-by-step explanation:

Length of the side of the square = [tex]x[/tex]

Therefore, Area of the square base = [tex]x^{2}[/tex]

Volume of a prism = Area of the base * Height of the prism

By making the Height of the prism the subject of the equation,

Height of the prism = [Volume of a prism / Area of the base]

Height of the prism = [tex]\frac{120}{x^{2} }[/tex] feet.

A prism with square base has 6 sides.

Area of the base and the top = [tex]2*x^{2}[/tex]

Area of the sides                     = [tex]4*x*\frac{120}{x^{2} }[/tex]

                                                 =[tex]\frac{480}{x}[/tex]

Surface area of the prism A(x)= Area of the base and the top + Area of the sides

                                                 =[tex]2*x^{2}[/tex] + [tex]\frac{480}{x}[/tex]

                                           A(x)=[tex]2*x^{2} +\frac{480}{x}[/tex]

Answer:

A(x)=480/x +2x^2

Step-by-step explanation:


Ver imagen qusaialmustafaovu05k