The typical soft drink can in the U.S. has a volume of 355 cm3. The two circular ends cost $0.0006 per cm2 each (because they are thicker), and the cost of the aluminum for the side of the can is $0.00026 per cm2. What dimensions will minimize the cost of a can? (Round your answers to two decimal places.)

Respuesta :

solution is attached below

Ver imagen ashimasood66

To minimize cost, is to reduce cost to the barest minimum.

The dimensions that minimize the cost of a can are: radius of 2.90 cm and a height of 39.02 cm

Given

[tex]V = 355cm^3[/tex] --- volume of the can

[tex]C_1 = \$0.0006 cm^{-2}[/tex] --- the cost of the circular ends

[tex]C_2 = \$0.00026 cm^{-2}[/tex] --- the cost of the side

The soft drink can, has the shape of a cylinder.

The volume of the can is:

[tex]V = \pi r^2h[/tex]

So, we have:

[tex]\pi r^2h = 355[/tex]

Make h the subject

[tex]h =\frac{355}{\pi r^2}[/tex]

The surface area of the can is:

[tex]A = 2\pi rh + 2\pi r^2[/tex]

The cost of the can is then calculated as:

[tex]A =C_2 \times 2\pi rh + 2\pi r^2 \times C_1[/tex]

Substitute [tex]h =\frac{355}{\pi r^2}[/tex]

[tex]A =C_2 \times 2\pi r \times \frac{355}{\pi r^2} + 2\pi r^2 \times C_1[/tex]

[tex]A =C_2 \times 2 \times \frac{355}{r} + 2\pi r^2 \times C_1[/tex]

Substitute [tex]C_1 = \$0.0006 cm^{-2}[/tex] and [tex]C_2 = \$0.00026 cm^{-2}[/tex]

[tex]A =0.00026 \times 2 \times \frac{355}{r} + 2\pi r^2 \times 0.0006[/tex]

[tex]A =\frac{0.1846}{r} + 0.0012\pi r^2[/tex]

[tex]A =\frac{0.1846}{r} + 0.0038 r^2[/tex]

Rewrite as:

[tex]A =0.1846r^{-1} + 0.0038 r^2[/tex]

Differentiate

[tex]A =-1 \times 0.1846r^{-2} + 2 \times 0.0038 r[/tex]

[tex]A =-0.1846r^{-2} + 0.0076 r[/tex]

Set to 0

[tex]-0.1846r^{-2} + 0.0076 r = 0[/tex]

Rewrite as:

[tex]0.0076r = 0.1846r^{-2}[/tex]

Multiply through by [tex]r^2[/tex]

[tex]0.0076r^3 = 0.1846[/tex]

Solve for [tex]r^3[/tex]

[tex]r^3 = \frac{0.1846}{0.0076}[/tex]

[tex]r^3 = 24.2894[/tex]

Take cube roots of both sides

[tex]r = \sqrt[3]{24.2894}[/tex]

[tex]r = 2.90[/tex]

Recall that:

[tex]h =\frac{355}{\pi r^2}[/tex]

[tex]h = \frac{355}{\pi \times 2.90}[/tex]

[tex]h = 39.02[/tex]

Hence, the dimensions that minimize the cost of a can are:

[tex]r = 2.90[/tex] and [tex]h = 39.02[/tex]

Read more about minimizing cost at:

https://brainly.com/question/10472381

Otras preguntas