Respuesta :

Given expression: [tex]-3x^2-12.[/tex]

Let us factor out Greatest Common Factor first.

Greatest Common Factor is -3 there.

Factoring out -3 there.

[tex]-3(x^2+4)[/tex]

4 could be  written as [tex]-(2i)^2[/tex].

Therefore,

[tex]-3(x^2+4) = -3[x^2-(2i)^2][/tex]

Applying difference of the square identity [tex](a)^2-(b)^2 = (a-b)(a+b)[/tex], we get

[tex]-3[x^2-(2i)^2] = -3(x-2i)(x+2i)[/tex]

Distributing -3 in first parenthesis, we get

-3(x-2i)(x+2i) = (-3x+6i)(x+2i)

Therefore, correct option is C.(-3x+6i)(x+2i).