Help ASAP.
Find the first, fourth, and eighth terms in the sequence. (A( n )=-2*5^n-1
a) -2; - 250; -156,250
b) -10; -1,000; -10,000,000
c) 0; -250; -156,250
d) -10; -1,250; -781,250
Write a rule for a geometric sequence that has negative 6 as its first term and a common ratio of 2. What is the tenth term of this sequence?

Respuesta :

gmany

[tex]1.\\A(n)=-2\cdot5^{n-1}\\\\\text{Find the first, fourth, and eighth terms}\\\text{It means}\ A(1),\ A(4)\ \text{and}\ A(8).\\\\\text{Substitute}\ n=1,\ n=4\ \text{and}\ n=8\ \text{in}\ A(n):\\\\A(1)=-2\cdot5^{1-1}=-2\cdot5^0=-2\cdot1=-2\\\\A(4)=-2\cdot5^{4-1}=-2\cdot5^3=-2\cdot125=-250\\\\A(8)=-2\cdot5^{8-1}=-2\cdot5^7=-2\cdot78,125=-156,250\\\\\boxed{Answer:\ a)\ -2,\ -250,\ -156,250}.[/tex]


[tex]2.\\a_1=-6,\ r=2\\\\\text{The formula of a n-th term of geometric sequence}\\\\a_n=a_1r^{n-1}\\\\\text{Substitute:}\\\\a_n=-6\cdot2^{n-1}=-6\cdot2^n\cdot2^{-1}=-6\cdot2^n\cdot\dfrac{1}{2}=-3\cdot2^n\\\\\boxed{Answer:\ A(n)=a_n=-3\cdot2^n}[/tex]