Respuesta :
(1)
For 250 million:
we know that
[tex]1 million=10^{6}[/tex]
so, we can write as
[tex]250million=250\times 10^6[/tex]
we can also write as
[tex]250million=2.5\times 10^2\times 10^6[/tex]
[tex]250million=2.5\times 10^8[/tex]
For 5 billion:
we know that
[tex]1 billion=10^{9}[/tex]
so, we can write as
[tex]5billion=5\times 10^9[/tex]
So, 5 billion is greater than 250 million
Differ factor:
[tex]\frac{5billion}{250million} =\frac{5\times 10^9}{2.5\times 10^8}[/tex]
[tex]\frac{5billion}{250million} =20[/tex]
(b)
we can see that
[tex]9.3\times 10^2[/tex] is greater than [tex]3.1\times 10^{-2}[/tex]
Differ factor:
[tex]\frac{9.3\times 10^2}{3.1\times 10^{-2}} =\frac{9.3}{3.1}\times 10^{2+2}[/tex]
[tex]\frac{9.3\times 10^2}{3.1\times 10^{-2}} =3\times 10^{4}[/tex]
[tex]\frac{9.3\times 10^2}{3.1\times 10^{-2}} =30000[/tex]
(c)
we can see that
[tex]10^{-8}[/tex] is greater than [tex]2\times 10^{-13}[/tex]
Differ factor:
[tex]\frac{10^{-8}}{2\times 10^{-13}} =\frac{1}{2}\times 10^{-8+13}[/tex]
[tex]\frac{10^{-8}}{2\times 10^{-13}} =\frac{1}{2}\times 10^{5}[/tex]
[tex]\frac{10^{-8}}{2\times 10^{-13}} =0.5\times 10^{5}[/tex]
[tex]\frac{10^{-8}}{2\times 10^{-13}} =50000[/tex]