Proof: [tex]\triangle CEH[/tex] and [tex]\triangle CDG[/tex] are isosceles triangles.
Explanation: Given in [tex]\triangle ABC[/tex] D and E are angle bisector of [tex]\angle A[/tex]and [tex]\angle B[/tex] respectively.
Where G and H are points in AB such that [tex]DG\perp AB[/tex] and [tex]EH\perp AB[/tex].
Let us take two triangles [tex]\triangle BCE[/tex] and [tex]\triangle BEH[/tex]
[tex]\angle BCE=\angle BHE[/tex] (Right angles)
BE=BE, (common segment)
[tex]\angle HBE=\angle CBE[/tex] ( Because BE is angle bisector)
Thus, [tex]\triangle BCE\cong\triangle BEH[/tex](ASA)
Therefore, EH= CE (CPCT)
So, in [tex]\triangle CEH[/tex], EH=CE ⇒[tex]\triangle CEH[/tex] is an isosceles triangle.
Now, in [tex]\triangle ACD[/tex] and [tex]\triangle ADG[/tex],
[tex]\angle ACD=\angle AGD[/tex] (Right angles)
AD=AD (common segment)
[tex]\angle CAD=\angle DAG[/tex] ( Because AD is angle bisector)
⇒[tex]\triangle ADC\cong\triangle AGD[/tex] (ASA)
Thus, CD=DG (CPCT)
So, in [tex]\triangle CDG[/tex], CD=DG ⇒[tex]\triangle CDG[/tex] is an isosceles triangle.