rewrite the given equation so there is a single power of 5,000 on each side. then, set the exponents equal to each other.

(1/5000)^2z · 5000^2z+2 = 5000

which equation shows the result?
a) 2=1
b) z=1
c) -4z+2=1
d) -4z+1=1

Respuesta :

Answer: A

Step-by-step explanation:

[tex](\frac{1}{5000})^{2z} * (5000)^{2z+2} = 5000[/tex]

[tex](5000)^{-2z} * (5000)^{2z+2} = (5000)^{1}[/tex]

[tex](5000)^{-2z+2z+2}= (5000)^{1}[/tex]

[tex](5000)^{0+2}= (5000)^{1}[/tex]

[tex](5000)^{2}= (5000)^{1}[/tex]

2 = 1


The equation [tex]2 = 1[/tex] shows the result. (Correct choice: A)

How to analyze a power function

In this question we must apply algebra properties for power functions and definition of logarithms to simplify given expression and make conclusions from results:

1) [tex]\left(\frac{1}{5000} \right)^{2\cdot z}\cdot 5000^{2\cdot z + 2} = 5000[/tex]  Given

2) [tex](5000^{-1})^{2\cdot z}\cdot 5000^{2\cdot z + 2} = 5000[/tex]  Definition of division

3) [tex]5000^{-2\cdot z}\cdot 5000^{2\cdot z + 2} = 5000[/tex]  [tex](x^{m})^{n} = x^{m\cdot n}[/tex]/[tex](-a)\cdot b = -a\cdot b[/tex]

4) [tex]5000^{2} = 5000[/tex]  [tex]x^m \cdot x^{n} = x^{m+n}[/tex]

5) [tex]\log_{5000} 5000^{2} = \log_{5000} 5000[/tex] Definition of logarithm

6) [tex]2\cdot \log_{5000} 5000 = \log_{5000} 5000[/tex]  [tex]\log_{b} a^{n} = n\cdot \log_{b} a[/tex]

7) [tex]2 = 1[/tex]  Compatibility with multiplication/Existence of multiplicative inverse/Modulative property/Result

The equation [tex]2 = 1[/tex] shows the result. (Correct choice: A) [tex]\blacksquare[/tex]

To learn more on functions, we kindly invite to check this verified question: https://brainly.com/question/5245372