Respuesta :

znk

Answer:

B. (2, 7)

Step-by-step explanation:

(1)  5x + 3y = 31

(2) 2x + 3y = 25     Subtract (2) from (1)

            3x = 6        Divide each side by 3

              x = 2        Substitute in (2)

=====

     4 + 3y = 25       Subtract 4 from each side

           3y = 21        Divide each side by 3

             y = 7

The solution is (2, 7).

=====

Check:

(1)   5×2 + 3×7 = 31

          10 + 21 = 31

                 31 = 31

(2) 2×2 + 3×7 = 25

           4 + 21 = 25

                25 = 25

Answer:

B Ordered pair  ( 2 ,7).

Step-by-step explanation:

Given  : 5x = 3y+31  and  2x = 3y+25.

To find : use the elimination method to solve the system of equation.

Solution : We have given that

5x +3y = 31 ------(1)

2x +3y = 25-------(2)

On subtracting equation (2) from (1)

5x + 3y = 31

(-)2x +(-)3y = (-)25

__________

3x +0  = 6

3x =6

On dividing by 3 both sides

x = 2.

Now plugging the value of x = 2 in equation (1)

5 (2)+ 3y = 31

10 +3y = 31

On subtracting both sides by 10

3y = 31 -10

3y =  21

On dividing by 3 both sides

y = 7

Ordered pair  ( 2 ,7).

Therefore, B Ordered pair  ( 2 ,7).