Consider the equation v = (1/6)zxt2. the dimensions of the variables v, x, and t are [l/t], [l], and [t] respectively. the numerical factor 6 is dimensionless. what must be the dimensions of the variable z, such that both sides of the equation have the same dimensions?

Respuesta :

Answer:

The dimension of the variable [tex]z[/tex] will be:   [tex][\frac{1}{t^3}][/tex]

Step-by-step explanation:

Given equation is:   [tex]v= (\frac{1}{6})zxt^2[/tex]

The dimensions of the variables [tex]v, x[/tex] and [tex]t[/tex] are  [tex][\frac{l}{t}], [l][/tex] and [tex][t][/tex] respectively.

Replacing all variables by their dimensions, we will get......

[tex][\frac{l}{t}]= z[l][t]^2[/tex]

[tex]\frac{[l]}{[t]}= z[l][t^2]\\ \\ z= \frac{[l]}{[t][l][t^2]}=\frac{1}{[t][t^2]}=\frac{1}{[t^3]}=[\frac{1}{t^3}][/tex]

So, the dimension of the variable [tex]z[/tex] will be:   [tex][\frac{1}{t^3}][/tex]

Answer:

The dimension of z is [tex][\frac{1}{t^3}][/tex].

Step-by-step explanation:

We have been given the dimension of  [tex]v=[\frac{l}{t}][/tex], [tex]x=[l][/tex] and [tex]t=[t][/tex]

We need to find the dimension of z

Here, l denotes the length and t denotes the time:

We will put the values of the dimension of the variables given to find the dimension of z. and 1/6 is dimensionless.So, neglect it.

[tex][\frac{l}{t}]=z\cdot [l]\cdot [t^2][/tex]

Now, we will simplify the above expression so, as to get the value of z

[tex][\frac{l}{t\cdot t^2\cdot l}]=z[/tex]

[tex]\Rightarrow z=[\frac{1}{t^3}][/tex]

Hence, the dimension of z is [tex][\frac{1}{t^3}][/tex]