Respuesta :

Answer:

k=[tex]\frac{1}{10000}[/tex]

Step-by-step explanation:

The given equation to us is

[tex](\frac{x}{100}-1)(\frac{x}{100}+1)=kx^{2}-1[/tex]

Now the RHS of the equation can be written as

(a-b)(a+b) = a²-b²

So the given equation becomes

[tex](\frac{x}{100})^{2}-(1)^{2}=kx^{2}-1[/tex]

Squaring the terms which have square over them

[tex]\frac{x^{2} }{100^{2}}-1=kx^{2}-1[/tex]

as 100² = 10000 so putting its value

[tex]\frac{x^{2} }{10000}-1=kx^{2}-1[/tex]

Adding one on both sides of the equation

[tex]\frac{x^{2} }{10000}-1 + 1=kx^{2}-1+1[/tex]

it becomes

[tex]\frac{x^{2} }{10000}=kx^{2}[/tex]

Now to get the value of K we have to divide both side of the equation with x²

so dividing with x² gives

[tex]\frac{x^{2} }{10000 * x^{2} } =\frac{kx^{2} }{x^{2} }[/tex]

Cutting out the same terms gives us

[tex]\frac{1}{10000} =\frac{k}{1}[/tex]

or

k=[tex]\frac{1}{10000}[/tex]