Respuesta :
The volume formula of a sphere is:
V = [tex] \frac{4}{3} [/tex][tex] \pi [/tex]r³
Given:
V = 288[tex] \pi [/tex] ft³
Find: Radius
Plug them in!
288[tex] \pi [/tex] = [tex] \frac{4}{3} [/tex][tex] \pi [/tex]r³
Divide by [tex] \pi [/tex] on either sides to cancel them out
[tex] \frac{288 \pi }{ \pi } [/tex] = [tex] \frac{4}{3} [/tex]r³
288 = [tex] \frac{4}{3} [/tex]r³
Multiply by 3
228 × 3 = [tex] \frac{4}{3} [/tex] × 3 × r³
3 and 3 cancels out
864 = 4r³
Divide by 4
[tex] \frac{864}{4} [/tex] = [tex] \frac{4r^3}{4} [/tex]
4 and 4 cancels out
216 = r³
Take the cube root
[tex] \sqrt[3]{216} [/tex] = [tex] \sqrt[3]{r^3} [/tex]
6 ft is the length of the radius
V = [tex] \frac{4}{3} [/tex][tex] \pi [/tex]r³
Given:
V = 288[tex] \pi [/tex] ft³
Find: Radius
Plug them in!
288[tex] \pi [/tex] = [tex] \frac{4}{3} [/tex][tex] \pi [/tex]r³
Divide by [tex] \pi [/tex] on either sides to cancel them out
[tex] \frac{288 \pi }{ \pi } [/tex] = [tex] \frac{4}{3} [/tex]r³
288 = [tex] \frac{4}{3} [/tex]r³
Multiply by 3
228 × 3 = [tex] \frac{4}{3} [/tex] × 3 × r³
3 and 3 cancels out
864 = 4r³
Divide by 4
[tex] \frac{864}{4} [/tex] = [tex] \frac{4r^3}{4} [/tex]
4 and 4 cancels out
216 = r³
Take the cube root
[tex] \sqrt[3]{216} [/tex] = [tex] \sqrt[3]{r^3} [/tex]
6 ft is the length of the radius
Answer:
6 cm is the length of the radius
Step-by-step explanation:
The volume formula of a sphere is:
V = r³
Given:
V = 288 ft³
Find: Radius
Plug them in!
288 = r³
Divide by on either sides to cancel them out
= r³
288 = r³
Multiply by 3
228 × 3 = × 3 × r³
3 and 3 cancels out
864 = 4r³
Divide by 4
=
4 and 4 cancels out
216 = r³
Take the cube root
=
6 cm is the length of the radius