Respuesta :

The volume formula of a sphere is:
V = [tex] \frac{4}{3} [/tex][tex] \pi [/tex]r³
 
Given:
V = 288[tex] \pi [/tex] ft³
Find: Radius

Plug them in!

288[tex] \pi [/tex] = [tex] \frac{4}{3} [/tex][tex] \pi [/tex]r³
Divide by [tex] \pi [/tex] on either sides to cancel them out

[tex] \frac{288 \pi }{ \pi } [/tex] = [tex] \frac{4}{3} [/tex]r³
288 = [tex] \frac{4}{3} [/tex]r³
Multiply by 3
228 × 3 = [tex] \frac{4}{3} [/tex] × 3 × r³
3 and 3 cancels out

864 = 4r³
Divide by 4
[tex] \frac{864}{4} [/tex] = [tex] \frac{4r^3}{4} [/tex]
4 and 4 cancels out

216 = r³
Take the cube root
[tex] \sqrt[3]{216} [/tex] = [tex] \sqrt[3]{r^3} [/tex]

6 ft is the length of the radius

Answer:

6 cm is the length of the radius

Step-by-step explanation:

The volume formula of a sphere is:

V = r³

 

Given:

V = 288 ft³

Find: Radius

Plug them in!

288 = r³

Divide by  on either sides to cancel them out

= r³

288 = r³

Multiply by 3

228 × 3 =  × 3 × r³

3 and 3 cancels out

864 = 4r³

Divide by 4

4 and 4 cancels out

216 = r³

Take the cube root

6 cm  is the length of the radius