Respuesta :

Answer:

The correct answer is C

Step-by-step explanation:

The given circle is centered at A(3, 1) and passes through the origin (0, 0).


The radius of this circle can be found using the distance formula;


[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex].


[tex]\Rightarrow r=\sqrt{(3-0)^2+(1-0)^2}[/tex].


[tex]\Rightarrow r=\sqrt{(3)^2+(1)^2}[/tex].


[tex]\Rightarrow r=\sqrt{9+1}[/tex].


[tex]\Rightarrow r=\sqrt{10}[/tex].


The equation of this circle is given by


[tex](x-a)^2+(y-b)^2=r^2[/tex]

Where [tex](a,b)[/tex] is the centre.

We substitute the center and radius to obtain;

[tex](x-3)^2+(y-1)^2=(\sqrt{10})^2[/tex]


[tex](x-3)^2+(y-1)^2=10[/tex]


Option A

When we substitute (2,-2) into this equation we get;

[tex](2-3)^2+(-2-1)^2=10[/tex]


[tex]1+9=10[/tex]

This is true


Option B

When we substitute K(6,0), we get,

[tex](6-3)^2+(0-1)^2=10[/tex]

[tex]9+1=10[/tex]

This is also true


Option C

We substitute L(4,-4) to get;

[tex](4-3)^2+(-4-1)^2=10[/tex]


[tex]1+25=10[/tex]


This is false. Hence L(4,-4) does not lie on the circle.


Option D

We substitute M(2,4)

[tex](2-3)^2+(4-1)^2=10[/tex]


[tex]1+9=10[/tex]

This is also true.


The correct answer is C