Respuesta :
ANSWER
[tex]a. \: \: \: ( 1,0)[/tex]
[tex]b. \: \: \: (0,1)[/tex]
EXPLANATION
a. We want to find the coordinates on the unit circle that corresponds to an angle of 0°
In general, the points on the unit circle are given by,
[tex]( \cos( \theta) ,\sin( \theta))[/tex]
So we substitute,
[tex]\theta = 0 \degree[/tex]
to obtain,
[tex]( \cos( 0\degree) ,\sin( 0\degree))[/tex]
[tex]( 1,0)[/tex]
b. For the coordinates of the point on the unit circle that corresponds to an angle of 90º,
We substitute
[tex] \theta = 90 \degree[/tex]
to obtain,
[tex]( \cos( 90\degree) ,\sin( 90\degree))[/tex]
This simplifies to,
[tex]( 0 ,1)[/tex]
[tex]a. \: \: \: ( 1,0)[/tex]
[tex]b. \: \: \: (0,1)[/tex]
EXPLANATION
a. We want to find the coordinates on the unit circle that corresponds to an angle of 0°
In general, the points on the unit circle are given by,
[tex]( \cos( \theta) ,\sin( \theta))[/tex]
So we substitute,
[tex]\theta = 0 \degree[/tex]
to obtain,
[tex]( \cos( 0\degree) ,\sin( 0\degree))[/tex]
[tex]( 1,0)[/tex]
b. For the coordinates of the point on the unit circle that corresponds to an angle of 90º,
We substitute
[tex] \theta = 90 \degree[/tex]
to obtain,
[tex]( \cos( 90\degree) ,\sin( 90\degree))[/tex]
This simplifies to,
[tex]( 0 ,1)[/tex]