Find the derivative

First use the chain rule; take [tex]y=\dfrac{x+5}{x^2+3}[/tex]. Then
[tex]\dfrac{\mathrm df}{\mathrm dx}=\dfrac{\mathrm df}{\mathrm dy}\cdot\dfrac{\mathrm dy}{\mathrm dx}[/tex]
By the power rule,
[tex]f(x)=y^2\implies\dfrac{\mathrm df}{\mathrm dy}=2y=\dfrac{2(x+5)}{x^2+3}[/tex]
By the quotient rule,
[tex]y=\dfrac{x+5}{x^2+3}\implies\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{(x^2+3)\frac{\mathrm d(x+5)}{\mathrm dx}-(x+5)\frac{\mathrm d(x^2+3)}{\mathrm dx}}{(x^2+3)^2}[/tex]
[tex]\implies\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{(x^2+3)-(x+5)(2x)}{(x^2+3)^2}[/tex]
[tex]\implies\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{3-10x-x^2}{(x^2+3)^2}[/tex]
So
[tex]\dfrac{\mathrm df}{\mathrm dx}=\dfrac{2(x+5)}{x^2+3}\cdot\dfrac{3-10x-x^2}{(x^2+3)^2}[/tex]
[tex]\implies\dfrac{\mathrm df}{\mathrm dx}=\dfrac{2(x+5)(3-10x-x^2)}{(x^2+3)^3}[/tex]