Answer:
6[tex]\sqrt{3}[/tex] - 12[tex]\sqrt{2}[/tex]
Step-by-step explanation:
Using the rule of radicals
• [tex]\sqrt{a}[/tex] × [tex]\sqrt{b}[/tex] ⇔ [tex]\sqrt{ab}[/tex]
Simplifying the radicals
[tex]\sqrt{27}[/tex] = [tex]\sqrt{9(3)}[/tex] = [tex]\sqrt{9}[/tex] × [tex]\sqrt{3}[/tex] = 3[tex]\sqrt{3}[/tex]
[tex]\sqrt{32}[/tex] = [tex]\sqrt{16(2)}[/tex] = [tex]\sqrt{16}[/tex] × [tex]\sqrt{2}[/tex] = 4[tex]\sqrt{2}[/tex]
Hence
(2 × 3[tex]\sqrt{3}[/tex]) - (3 × 4[tex]\sqrt{2}[/tex])
= 6[tex]\sqrt{3}[/tex] - 12[tex]\sqrt{2}[/tex]