Answer: [tex]83.\overline{3}\text{ feet}[/tex]
Step-by-step explanation:
Since, In the given diagram,
The sides of the triangles ABC and EDC are,
BC = 62 feet, DC = 93 feet and DE = 125 feet(given)
And, angles B and D are right angles,
⇒ [tex] \angle ABC\cong \angle EDC[/tex]
[tex]\text{Also, } \angle ACB\cong \angle ECD[/tex] ( Vertically opposite angles )
By AA similarity postulate,
[tex]\triangle ABC\sim \triangle EDC[/tex]
The sides of similar triangles are in same proportion ,
⇒ [tex]\frac{AB}{ED}=\frac{BC}{DC}[/tex]
⇒ [tex]AB \times DC = BC \times ED[/tex]
⇒ [tex]AB = \frac{BC.ED}{DC}[/tex]
By substituting the values,
We get,
⇒ [tex]AB = \frac{62\times 125}{93}[/tex]
⇒ [tex]AB = \frac{7750}{93}=83.\overline{3}\text{ feet}[/tex]