I answered this problem wrong on my Calculus BC test. Can you guys help me figure out the correct answer?

If y = 3x^3 - 2x and dx/dt = 3 , find dy/dt when x = -2.

Respuesta :

Answer:

[tex]\frac{dy}{dt}=102[/tex]

Step-by-step explanation:

It was given that;

[tex]y=3x^3-2x[/tex]

When we differentiate this function with respect to x, we get;

[tex]\frac{dy}{dx}=9x^2-2[/tex]

When [tex]x=-2[/tex], we get;

[tex]\frac{dy}{dx}=9(-2)^2-2[/tex]

[tex]\frac{dy}{dx}=34[/tex]

Also we were given that;

[tex]\frac{dx}{dt} =3[/tex].

Recall the chain rule;

[tex]\frac{dy}{dx}=\frac{dy}{dt} \times \frac{dt}{dx}[/tex]

[tex]\Rightarrow \frac{dy}{dt}=\frac{dy}{dx} \times \frac{dx}{dt}[/tex]

We substitute these values into the formula to get;

[tex]\Rightarrow \frac{dy}{dt}=34\times 3[/tex]

[tex]\frac{dy}{dt}=102[/tex]