What is the midpoint of AC?

Answer:
[tex](m+p,n+r)[/tex]
Step-by-step explanation:
Let [tex](x_1,y_1)=A(2m,2n)[/tex] and [tex](x_2,y_2)=C(2p,2r)[/tex].
The midpoint is calculated using the formula;
[tex]M=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]
Substitute the coordinates to get;
[tex]M=(\frac{2m+2p}{2},\frac{2n+2r}{2})[/tex]
[tex]M=(\frac{2(m+p)}{2},\frac{2(n+r)}{2})[/tex]
[tex]M=(m+p,n+r)[/tex]
Answer:
The coordinates of midpoint of AC = [ (m + p), (n + r)]
Step-by-step explanation:
The midpoint of the line joining the the coordinates(x₁,y₁) and (x₂,y₂) is given by,
(x,y) = [(x₁ + x2)/2 , (y₁ + y₂)/2]
To find the midpoint of AC
It is given that,
A(2m, 2n) and C(2p, 2r)
Here, (x₁,y₁) = (2m, 2n)
(x₂,y₂) = (2p, 2r)
The midpoint of AC, (x, y) = [(x₁ + x2)/2 , (y₁ + y₂)/2]
= [(2m + 2p)/2 , (2n + 2r)/2]
=[ (m + p), (n + r)]
Therefore the coordinates of midpoint of AC = [ (m + p), (n + r)]