Respuesta :

Answer:

[tex]\frac{y^{2} }{81} -\frac{x^{2} }{40} }=1[/tex] is standard equation of hyperbola with vertices at (0, ±9) and foci at (0, ±11).

Step-by-step explanation:

We have given the vertices at (0, ±9) and foci at (0, ±11).

Let (0,±a)  = (0,±9) and (0,±c)  = (0,±11)

The standard equation of parabola is:

[tex]\frac{y^{2} }{a^{2} } -\frac{x^{2} }{b^{2} }=1[/tex]

From statement, a  = 9

c² = a²+b²

(11)²  = (9)²+b²

121-81  = b²

40  = b²

Putting the value of a² and b² in standard equation of parabola, we have

[tex]\frac{y^{2} }{81} -\frac{x^{2} }{40} }=1[/tex] which is the answer.