Respuesta :

QUESTION 33

The length of the legs of the right triangle are given as,

6 centimeters and 8 centimeters.

The length of the hypotenuse can be found using the Pythagoras Theorem.

[tex] {h}^{2} = {6}^{2} + {8}^{2} [/tex]

[tex] {h}^{2} = 36+ 64[/tex]

[tex] {h}^{2} = 100[/tex]

[tex]h = \sqrt{100} [/tex]

[tex]h = 10cm[/tex]

Answer: C

QUESTION 34

The triangle has a hypotenuse of length, 55 inches and a leg of 33 inches.

The length of the other leg can be found using the Pythagoras Theorem,

[tex] {l}^{2} + {33}^{2} = {55}^{2} [/tex]

[tex] {l}^{2} = {55}^{2} - {33}^{2} [/tex]

[tex] {l}^{2} = 1936[/tex]

[tex]l = \sqrt{1936} [/tex]

[tex]l = 44cm[/tex]

Answer:B

QUESTION 35.

We want to find the distance between,

(2,-1) and (-1,3).

Recall the distance formula,

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Substitute the values to get,

[tex]d=\sqrt{( - 1-2)^2+(3- - 1)^2}[/tex]

[tex]d=\sqrt{( - 3)^2+(4)^2}[/tex]

[tex]d=\sqrt{9+16}[/tex]

[tex]d=\sqrt{25}[/tex]

[tex]d = 5[/tex]

Answer: 5 units.

QUESTION 36

We want to find the distance between,

(2,2) and (-3,-3).

We use the distance formula again,

[tex]d=\sqrt{( - 3-2)^2+( - 3- 2)^2}[/tex]

[tex]d=\sqrt{( - 5)^2+( - 5)^2}[/tex]

[tex]d=\sqrt{25+25}[/tex]

[tex]d=\sqrt{50}[/tex]

[tex]d=5\sqrt{2}[/tex]

Answer: D

Answer:

hello

Step-by-step explanation: