Help!! 15 points. Step by step explanation.

Answer: [tex]\bold{f(x)=2\bigg(x+\dfrac{3}{4}\bigg)^2+\dfrac{-25}{8} }[/tex]
Step-by-step explanation:
f(x) = 2x² + 3x - 2
[tex]\text{Add 2 to both sides:}\\f(x) + 2 = 2x^2+3x\\\\\\\text{Factor out 2 on the right side:}\\f(x) + 2 = 2\bigg(x^2+\dfrac{3}{2}x\bigg)\\\\\\\text{Add the value that creates a perfect square on the right side:}\\f(x) + 2 + 2\bigg(\dfrac{3}{2\cdot2}\bigg)^2=2\bigg[x^2+\dfrac{3}{2}x+\bigg(\dfrac{3}{2\cdot2}\bigg)^2\bigg]\\\\\\\text{Simplify:}\\f(x)+2+\dfrac{9}{8}=2\bigg(x+\dfrac{3}{4}\bigg)^2\\\\\\\text{Isolate f(x):}\\f(x)=2\bigg(x+\dfrac{3}{4}\bigg)^2+\dfrac{-25}{8}\\[/tex]