Respuesta :

Answer:

[tex]\text{The area is }140units^2[/tex]

Step-by-step explanation:

Given trapezoid ABCD, AB =13, CD = 14, BC = 5 and AD = 20 units.

we have to find the area of trapezoid  ABCD

Quadrilateral BEFC is a rectangle, then

EF = BC = 5 units and BE = CF = y units

Let AE = x, then FD = AD - AE - EF = 20 - x - 5 = 15 - x.

By the Pythagorean theorem,

In ΔDFC

[tex]CD^2=CF^2+FD^2[/tex]

[tex]14^2=y^2+(15-x)^2[/tex]   →   (1)

In ΔAEB,

[tex]AB^2=BE^2+AE^2[/tex]

[tex]13^2=y^2+x^2[/tex]     →  (2)

Subtract equation 2 from 1

[tex]14^2-13^2=(15-x)^2-x^2[/tex]

[tex]196-169=225+x^2-30x-x^2[/tex]

[tex]30x=225-196+169=198[/tex]

[tex]x=6.6 units[/tex]

(2) ⇒ [tex]13^2=y^2+x^2[/tex]  

[tex]169-43.56=y^2[/tex]

[tex]y=11.2units[/tex]

Hence, the height is 11.2 units

[tex]\text{Area of trapezium ABCD=}\frac{1}{2}\times (BC+AD)\times height[/tex]

[tex]=\frac{1}{2}\times (5+20)\times 11.2=140 units^2[/tex]

[tex]\text{Hence, the area is }140units^2[/tex]

Ver imagen SerenaBochenek

Answer:

140

Step-by-step explanation:

RSM