Respuesta :
Answer:
5/51
Step-by-step explanation:
The probability of Kevin choosing a white sock on the first pick, there are 6 white socks and 18 socks total so the chances are 6/18. But 6/18 simplified is 1/3. On the second choice he has to pick another sock and there are 5 left out of 17 socks total remaining. So the chances of him picking another sock are 5/17. If you multiply 1/3 by 5/17 you will end up with your answer, 5/51.
Probabilities are used to determine the chances of an event.
The given parameters are:
[tex]\mathbf{White = 6}[/tex]
[tex]\mathbf{Black = 4}[/tex]
[tex]\mathbf{Grey = 3}[/tex]
[tex]\mathbf{Red = 5}[/tex]
So, the total is:
[tex]\mathbf{Total = 6 + 4 + 3 + 5}[/tex]
[tex]\mathbf{Total = 18}[/tex]
The probability that both selections are white socks is:
[tex]\mathbf{Pr = \frac{White}{Total} \times \frac{White - 1}{Total - 1} }[/tex]
1 is subtracted from the fractions of the second factor, because it is a selection without replacement.
So, we have:
[tex]\mathbf{Pr = \frac{6}{18} \times \frac{6 - 1}{18 - 1} }[/tex]
[tex]\mathbf{Pr = \frac{1}{3} \times \frac{5}{17} }[/tex]
So, we have:
[tex]\mathbf{Pr = \frac{5}{51} }[/tex]
Hence, the probability that both selections are white socks is 5/51
Read more about probabilities at:
https://brainly.com/question/11234923