Find the radius of the circle circumscribed around an equilateral triangle, if the radius of the circle inscribed into this triangle is 10 cm.

Respuesta :

frika

Answer:

20 cm

Step-by-step explanation:

Let a cm be the length of the side of equilateral triangle.

Use formula for the radius of inscribed circle into the equailteral triangle:

[tex]r_{inscribed}=\dfrac{a\sqrt{3}}{6}[/tex]

Hence,

[tex]\dfrac{a\sqrt{3}}{6}=10\Rightarrow a=\dfrac{60}{\sqrt{3}}[/tex]

Now, use formula for the circumscribed circle's radius:

[tex]R_{circumscribed}=\dfrac{a\sqrt{3}}{3}[/tex]

Therefore,

[tex]R_{circumscribed}=\dfrac{\frac{60}{\sqrt{3}}\cdot \sqrt{3}}{3}=20\ cm[/tex]

gmany

Answer:

20 cm

Step-by-step explanation:

Look at the picture.

The formula of a radius of a circle circumscribed around an equaliteral triangle:

[tex]R=\dfrac{2}{3}\cdot\dfrac{a\sqrt3}{2}[/tex]

The formula od a radius of a circle inscribed into an equaliteral triangle:

[tex]r=\dfrac{1}{3}\cdot\dfrac{a\sqrt3}{2}[/tex]

As you can see in the formulas above, the radius of the circumscribed circle is twice the radius of the inscribed circle.

Therefore

[tex]R=2r[/tex]

Given:

[tex]r=10\ cm[/tex]

therefore

[tex]R=2(10\ cm)=20\ cm[/tex]

Ver imagen gmany